MA10210: ALGEBRA 1B

http://people.bath.ac.uk/aik22/ma10210

(Useful) information

- Hand in sheets by noon on Friday
- Marked sheets given back in the following tutorial
- Tutorial format:
 - Quick comments on previous sheet I'm happy to go into more detail on individual questions, but you'll need to ask
 - Overview of relevant material for next sheet
 - Warm-up (or other) examples
 You have a go, I'll answer any questions

Row Echelon Form

A matrix \boldsymbol{A} is in row echelon form if

- all zero rows are at the bottom,
- the first non-zero entry in each non-zero row is 1, (these are called pivots)
- the pivot in row i + 1 is strictly right of the pivot in row i.

Reduced Row Echelon Form

A matrix \boldsymbol{A} is in reduced row echelon form if

- all zero rows are at the bottom,
- the first non-zero entry in each non-zero row is 1, (these are called *pivots*)
- the pivot in row i + 1 is strictly right of the pivot in row i,
- all entries above each pivot are 0.

Elementary Row Operations

There are three types of elementary row operation:

 $\begin{aligned} R_i &\to \lambda R_i, \quad \lambda \neq 0 & \text{mutiply } i^{th} \text{ row by } \lambda. \\ R_i &\to R_i + \lambda R_j & \text{add a multiple of row to row } i. \\ R_i &\leftrightarrow R_j & \text{swap rows } i \text{ and } j. \end{aligned}$

- Write clearly which row operations you're performing.
- □ Be very careful not to lose a row...

Warm-up Questions

□ Q1, Q5

Bonus Question:

Find the general solution for Ax = bwhere $A = \begin{pmatrix} 2 & 2 & 4 \\ 2 & 4 & 8 \\ 0 & 3 & 6 \end{pmatrix}$ and $b = \begin{pmatrix} 10 \\ 16 \\ 9 \end{pmatrix}$.

Find the solution for Ax = b, working in the field \mathbb{F}_3 where $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Warm-up Questions

Bonus question solutions:

$$oldsymbol{x}^{\mathrm{T}} = egin{pmatrix} 2 & 3 & 0 \end{pmatrix} + \lambda \left(0, -2, 1
ight) \ oldsymbol{x}^{\mathrm{T}} = egin{pmatrix} 1, 1, -1 \end{pmatrix}$$

Worked solution to bonus question

Reduce the matrix to REF:

$\begin{pmatrix} 2\\ 2\\ 0 \end{pmatrix}$	$2 \\ 4 \\ 3$	$ \begin{array}{c c} 4 & 10 \\ 8 & 16 \\ 6 & 9 \end{array} $	
$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$	$egin{array}{c} 1 \\ 4 \\ 3 \end{array}$	$ \begin{array}{c cc} 2 & 5 \\ 8 & 16 \\ 6 & 9 \end{array} $	$\frac{1}{2}R_1$
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\begin{array}{c c}2 & 5\\4 & 6\\6 & 9\end{array}$	$R_2 - 2R_1$
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$egin{array}{c} 1 \ 1 \ 3 \end{array}$	$ \begin{array}{c c} 2 & 5 \\ 2 & 3 \\ 6 & 9 \end{array} $	$\frac{1}{2}R_2$
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$egin{array}{c} 1 \\ 1 \\ 0 \end{array}$	$ \begin{array}{c c} 2 & 5\\ 2 & 3\\ 0 & 0 \end{array} $	$R_3 - 3R_2$

To further reduce the matrix to RREF:

From this point: No pivot for x_3 , so set $x_3 = \lambda_1$ Second row: $x_2 + 2x_3 = 3 \Leftrightarrow x_2 = 3 - 2\lambda$ First row: $x_1 = 2$

So the general solution is:

$$\boldsymbol{x} = \begin{pmatrix} 2\\3\\0 \end{pmatrix} + \lambda \begin{pmatrix} 0\\-2\\1 \end{pmatrix}$$

Worked solution to bonus question

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 1 & 1 & -1 & | & 0 \\ 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & 1 & | & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & | & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & | & -1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -1 \end{pmatrix}$$

$$R_1 - R_3$$

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -1 \end{pmatrix}$$
So the solution is $\boldsymbol{x} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

Overview of Sheet 1

- Q2: almost identical to warm-up Q1
- Q3: once you put the system into matrix form, it's similar to Q1 & 2
 - a line is $oldsymbol{r}+\lambdaoldsymbol{s}$
- Q4: $\mathbb{F}_2 = \mathbb{Z}_2$, elementary row operations work as they did before
- Q6: similar feel to Q5 if your answer needs more than a few lines, there's a neater way to do it
- □ Q7: similar to example from Lecture 2