MA10210: ALGEBRA 1 B

(Useful) information

\square Hand in sheets by noon on Friday
\square Marked sheets given back in the following tutorial
\square Tutorial format:
\square Quick comments on previous sheet I'm happy to go into more detail on individual questions, but you'll need to ask
\square Overview of relevant material for next sheet

- Warm-up (or other) examples

You have a go, l'll answer any questions

Row Echelon Form

A matrix \boldsymbol{A} is in row echelon form if

- all zero rows are at the bottom,
- the first non-zero entry in each non-zero row is 1, (these are called pivots)
- the pivot in row $i+1$ is strictly right of the pivot in row i.

Reduced Row Echelon Form

A matrix \boldsymbol{A} is in reduced row echelon form if

- all zero rows are at the bottom,
- the first non-zero entry in each non-zero row is 1, (these are called pivots)
- the pivot in row $i+1$ is strictly right of the pivot in row i,
- all entries above each pivot are 0 .

Elementary Row Operations

There are three types of elementary row operation:

$$
\begin{aligned}
& R_{i} \rightarrow \lambda R_{i}, \quad \lambda \neq 0 \\
& R_{i} \rightarrow R_{i}+\lambda R_{j} \\
& R_{i} \leftrightarrow R_{j}
\end{aligned}
$$

mutiply $i^{\text {th }}$ row by λ.
add a multiple of row to row i. swap rows i and j.
\square Write clearly which row operations you're performing.
\square Be very careful not to lose a row...

Warm-up Questions

\square Q1, Q5

\square Bonus Question:
Find the general solution for $\boldsymbol{A x}=\boldsymbol{b}$
where $\boldsymbol{A}=\left(\begin{array}{lll}2 & 2 & 4 \\ 2 & 4 & 8 \\ 0 & 3 & 6\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}10 \\ 16 \\ 9\end{array}\right)$.
Find the solution for $\boldsymbol{A x}=\boldsymbol{b}$, working in the field \mathbb{F}_{3}
where $\boldsymbol{A}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & -1\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

Warm-up Questions

\square Bonus question solutions:

$$
\left.\begin{array}{c}
\boldsymbol{x}^{\mathrm{T}}=\left(\begin{array}{lll}
2 & 3 & 0
\end{array}\right)+\lambda(0,-2,1) \\
\boldsymbol{x}^{\mathrm{T}}=(1,1,-1
\end{array}\right)
$$

Worked solution to bonus question

Reduce the matrix to REF:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
2 & 2 & 4 & 10 \\
2 & 4 & 8 & 16 \\
0 & 3 & 6 & 9
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 1 & 2 & 5 \\
2 & 4 & 8 & 16 \\
0 & 3 & 6 & 9
\end{array}\right) \\
& \left(\begin{array}{lll|l}
1 & 1 & 2 & 5 \\
0 & 2 & 4 & 6 \\
0 & 3 & 6 & 9
\end{array}\right) \\
& \left(\begin{array}{lll|l}
1 & 1 & 2 & 5 \\
0 & 1 & 2 & 3 \\
0 & 3 & 6 & 9
\end{array}\right) \\
& \left(\begin{array}{lll|l}
1 & 1 & 2 & 5 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \frac{1}{2} R_{1} \\
& R_{2}-2 R_{1} \\
& \frac{1}{2} R_{2} \\
& R_{3}-3 R_{2}
\end{aligned}
$$

To further reduce the matrix to RREF:

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) \quad R_{1}-R_{2}
$$

From this point:
No pivot for x_{3}, so set

$$
x_{3}=\lambda_{1}
$$

Second row:

$$
x_{2}+2 x_{3}=3 \Leftrightarrow x_{2}=3-2 \lambda
$$

First row:

$$
x_{1}=2
$$

So the general solution is:

$$
\boldsymbol{x}=\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)
$$

Worked solution to bonus question

$$
\begin{array}{ll}
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & -1 & 0
\end{array}\right) \\
\left(\begin{array}{lll|c}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1
\end{array}\right) & R_{3}-R_{1} \\
\left(\begin{array}{lll|c}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) & R_{2}-R_{3} \\
\left(\begin{array}{lll|l}
1 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) & R_{1}-R_{3} \\
\left(\begin{array}{lll|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) & R_{1}-R_{2}
\end{array}
$$

So the solution is $\boldsymbol{x}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$.

Overview of Sheet 1

\square Q2: almost identical to warm-up Q1
\square Q3: once you put the system into matrix form, it's similar to Q1 \& 2

- a line is $r+\lambda s$
\square Q4: $\mathbb{F}_{2}=\mathbb{Z}_{2}$, elementary row operations work as they did before
\square Q6: similar feel to Q5 - if your answer needs more than a few lines, there's a neater way to do it
\square Q7: similar to example from Lecture 2

