MA10210: ALGEBRA 1 B

Comments on Sheet 1

\square Be careful with calculations
\square Often with matrices it is possible to check the results you get:

- If your answer for \mathbf{x} doesn't solve $\mathbf{A x}=\boldsymbol{b}$ you have a problem! © Try to find the problem by looking at how far back in your calculation your solution works. (Is it right for the final step? Halfway through?)

Comments on Sheet 1

\square Don't lose information from the matrix
\square To avoid this: don't take several steps at the same time.

- If you're still determined to take several steps at the same time, list the operations in the order you plan to perform them - if operations further down the list involve rows you're adjusted earlier in the list you have a problem - do these in separate steps.

Warm-up Questions

\square Q1
\square Q3
\square Q5
\square Bonus Question:
\square Which of the following form linear subspaces of \mathbb{R}^{3} ?

$$
x_{1}+x_{2}+x_{3}=0 \quad x_{1} x_{2} x_{3}=0
$$

Bonus Questions

\square Find the rank of the following matrices, and the inverses where they exist:

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 2 & 4 & 1 \\
3 & 3 & 6 & 3 \\
0 & 1 & 2 & 0
\end{array}\right) \\
\left(\begin{array}{lll}
4 & 7 & 4 \\
2 & 1 & 4 \\
1 & 3 & 0
\end{array}\right)
\end{gathered}
$$

$$
\left(\begin{array}{ccc}
3 & -3 & 1 \\
4 & 1 & 2 \\
0 & 2 & 0
\end{array}\right)
$$

Answers to Bonus Question

$\square x_{1}+x_{2}+x_{3}=0 \quad$ - yes
If $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}\right)$ are two solutions, then $\boldsymbol{x}+\boldsymbol{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y+3\right)$ has

$$
\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right)+\left(y_{1}+y_{2}+y_{3}\right)=0
$$

so $\boldsymbol{x}+\boldsymbol{y}$ is a solution also.
Hence this is a linear subspace of \mathbb{R}^{n}.
$\square x_{1} x_{2} x_{3}=0 \quad$ - no
Consider the solutions
$\boldsymbol{x}=(0,1,1)$ and $\boldsymbol{y}=(1,1,0)$.
Then $\boldsymbol{x}+\boldsymbol{y}=(1,2,1)$ is not a solution.

Bonus Questions (Answers)

\square Find the rank of the following matrices, and the inverses where they exist:

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & 2 & 4 & 1 \\
3 & 3 & 6 & 3 \\
0 & 1 & 2 & 0
\end{array}\right) \\
\\
\quad \begin{array}{rrr}
\text { rank } 2
\end{array} \\
\left(\begin{array}{lll}
4 & 7 & 4 \\
2 & 1 & 4 \\
1 & 3 & 0
\end{array}\right)
\end{gathered}
$$

$$
\left(\begin{array}{ccc}
3 & -3 & 1 \\
4 & 1 & 2 \\
0 & 2 & 0
\end{array}\right)
$$

rank 3
(has inverse)
rank 2

Overview of Sheet 2

\square Q2: if you have two solutions to the equation, can you always add them to get a solution?
\square Q4: use Q3 and some facts from lectures - make sure you identify what you're using.
\square Q6: use elementary row operations - if you manage to invert it, check your answer.
\square Q7: to find the null space, solve $\boldsymbol{A x}=0$.

