MA10210: ALGEBRA 1 B

Comments on Sheet 4

\square Explanations need to be more thorough

Good writing is clearly important if you wish to be understood, but it has a bonus: it clarifies for you the material being communicated and thus adds to your understanding. In fact, I believe that if I can't explain an idea in writing, then I don't understand it. This is one reason why writing well helps you to think like a mathematician.

Generally, we write to explain to another person, so have this person in mind. Two points to remember:

- Have mercy on the reader. Do not make it difficult for them - particularly someone marking your work.
- The responsibility of communication lies with you. If someone at your level can't understand it, then the problem is with your writing!

Kevin Houston, How to Think Like a Mathematician, sample chapter

Comments on Sheet 4

\square Working in different bases:
\square Decide on the basis you are using - make it clear
\square When writing a matrix in your basis, the answer should be given in the basis you are using.
\square Consider Q4:

$$
\begin{aligned}
& \phi\left(p_{1}\right)=1=p_{0} \Rightarrow A\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \\
& \phi\left(p_{2}\right)=2 x-1=p_{0}+2 p_{1} \Rightarrow A\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

- Repeat this process for each of the basis elements

Warm-up Questions

\square Q1
\square Q4
\square Q6
\square Bonus Question:
\square Which combinations of the following five elements form a basis of \mathbb{R}^{4} ?

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 2 & 4 & 3
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 3 & 3 & 0
\end{array}\right)
\end{aligned}
$$

Answers to bonus question

\square A
$\begin{array}{lll}0 & 1 & 0\end{array}$
\square Try creating the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$ using A-E

- Missing A:

$$
\begin{array}{ll}
\mathbf{e}_{1}=-3 B-2 / 3 C+D-4 / 3 E ; \\
\mathbf{e}_{2}=C ; & \mathbf{e}_{3}=-C+1 / 3 E ; \\
\text { So }\{B, C, D, E\} & \text { is a basis for } \mathbb{R}^{4} .
\end{array} \quad \mathbf{e}_{4}=B ;
$$

- Missing $B:\{A, C, D, E\}$ is a basis (note that $B=A-C$)
- Missing $C:\{A, B, D, E\}$ is a basis $(C=A-B)$
- Missing D:
no combination of $\{A, B, C, E\}$ will give \mathbf{e}_{1}, so not a basis.
- Missing E: Not a basis. (same reason as for missing D)

Overview of Sheet 5

\square Q2: similar to Q1
\square Q3: Use Theorem 3.1.4, Prop 3.2.3,
Theorem 3.2.5 (for part iii),
Lemma 3.2.1 (for part iv)
\square Q5: (i) use Q4; (ii) use similar process to Q4
\square Q7: similar to Q6

Overview of Sheet 5

\square Q8:
\square (ii) Assume there is some dependence and try various values of \mathbf{x} to see what the coefficients need to be.
\square (iii) Follow instructions!

- (iv) Consider how (i)-(iii) works and apply the same method to the case in (iv) (which has four dimensions why?)

